

GCE MARKING SCHEME

MATHEMATICS - C1-C4 & FP1-FP3 AS/Advanced

SUMMER 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2014 examination in GCE MATHEMATICS C1-C4 & FP1-FP3. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	Page
C1	1
C2	6
C3	11
C4	16
FP1	21
FP2	26
FP3	30

1.	(<i>a</i>)	(i)	Gradient of $AB = $ <u>increase in y</u>	M1
			Gradient of $AB = -\frac{1}{2}$ (or equivalent)	A1
		(ii)	A correct method for finding the equation of <i>AB</i> using the candidate's value for the gradient of <i>AB</i> . Equation of <i>AB</i> : $y-3 = -\frac{1}{2}(x-12)$ (or equivalent)	M1
			(f.t. the candidate's value for the gradient of AB)	A1
	(<i>b</i>)	(i)	Use of gradient $L \times$ gradient $AB = -1$	M1
		()	Equation of L: $y = 2x - 1$ (ft the candidate's value for the gradient of AB)	A1
		(ii)	A correct method for finding the coordinates of D	M1
			D(4,7) (convincing)	A1
		(iii)	A correct method for finding the length of $AD(BD)$	M1
			$AD = \sqrt{45}$	A1
			$BD = \sqrt{80}$	A1
	(<i>c</i>)	(i)	A correct method for finding the coordinates of E	M1
			<i>E</i> (8, 15)	A1
		(ii)	ACBE is a kite (c.a.o.)	B 1

2. (a)
$$\frac{3\sqrt{3}+1}{5\sqrt{3}-7} = \frac{(3\sqrt{3}+1)(5\sqrt{3}+7)}{(5\sqrt{3}-7)(5\sqrt{3}+7)}$$
M1
Numerator: $45 + 21\sqrt{3} + 5\sqrt{3} + 7$ A1
Denominator: $75 - 49$ A1
 $\frac{3\sqrt{3}+1}{5\sqrt{3}-7} = 2 + \sqrt{3}$ (c.a.o.) A1

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $5\sqrt{3} - 7$

(b)
$$\sqrt{12 \times \sqrt{24}} = 12\sqrt{2}$$
 B1
 $\frac{\sqrt{150}}{\sqrt{3}} = 5\sqrt{2}$ B1

$$\frac{36}{\sqrt{2}} = 18\sqrt{2}$$
B1

$$(\sqrt{12} \times \sqrt{24}) + \frac{\sqrt{150}}{\sqrt{3}} - \frac{36}{\sqrt{2}} = -\sqrt{2}$$
 (c.a.o.) B1

C1

3. (*a*)

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 8$

(an attempt to differentiate, at least one non-zero term correct) M1 An attempt to substitute x = 6 in candidate's expression for $\frac{dy}{dx}$ m1

Value of
$$\frac{dy}{dx}$$
 at $P = 4$ (c.a.o.) A1

Gradient of normal = $\frac{-1}{\text{candidate's value for } \frac{dy}{dy}}$ m1

dxEquation of normal to *C* at *P*: $y-2 = -\frac{1}{4}(x-6)$ (or equivalent) (f.t. candidate's value for dy provided M1 and both m1's awarded) A1 dx

(<i>b</i>)	Putting candidate's expression for $dy = 2$	M1
	dx	

x-coordinate of $Q = 5$	A1
y-coordinate of $Q = -1$	A1
c = -11	A1

(f.t. candidate's expression for $\frac{dy}{dx}$ and at most one error in the $\frac{dy}{dx}$

enumeration of the coordinates of Q for all three A marks provided both M1's are awarded)

4. (a)
$$(1+x)^6 = 1 + 6x + 15x^2 + 20x^3 + ...$$

All terms correct B2
If B2 not awarded, award B1 for three correct terms
(b) An attempt to substitute $x = 0.1$ in the expansion of part (a)
(f.t. candidate's coefficients from part (a)) M1
 $1.1^6 \approx 1 + 6 \times 0.1 + 15 \times 0.01 + 20 \times 0.001$
(At least three terms correct, f.t. candidate's coefficients from part (a))
 $1.1^6 \approx 1.77$ (c.a.o.) A1

5. (a)
$$a = 4$$
 B1
 $b = -1$ B1

$$c = 7$$
 B1

(b) An attempt to substitute 1 for x in an appropriate quadratic expression
(f.t. candidate's value for b) M1
Greatest value of
$$\frac{1}{4x^2 - 8x + 29} = \frac{1}{25}$$
 (c.a.o.) A1

6.	An expression for $b^2 - 4ac$, with at least two of a, b, c correct	M1
	$b^{2} - 4ac = (2k)^{2} - 4 \times (k - 1) \times (7k - 4)$	A1
	Putting $b^2 - 4ac < 0$	m1
	$6k^2 - 11k + 4 > 0 \tag{convincing}$	A1
	Finding critical values $k = \frac{1}{2}, k = \frac{4}{3}$	B 1
	A statement (mathematical or otherwise) to the effect that	
	$k < \frac{1}{2}$ or $k > \frac{4}{3}$ (or equivalent)	
	(f.t. candidate's derived critical values)	B2
	Deduct 1 mark for each of the following errors	
	the use of non-strict inequalities	
	the use of the word 'and' instead of the word 'or'	

7. (a)
$$y + \delta y = -3(x + \delta x)^2 + 8(x + \delta x) - 7$$

Subtracting y from above to find δy
 $\delta y = -6x\delta x - 3(\delta x)^2 + 8\delta x$
Dividing by δx and letting $\delta x \to 0$
 $\frac{dy}{dx} = \liminf_{\delta x \to 0} \frac{\delta y}{\delta x} = -6x + 8$
(c.a.o.) A1

(b)
$$\underline{dy} = 9 \times \underline{5} \times x^{1/4} - 8 \times -\underline{1} \times x^{-4/3}$$
 B1, B1

8.	Either:	showing that $f(2$	(2) = 0	
	Or:	trying to find $f(r$	<i>r</i>) for at least two values of <i>r</i>	M 1
	$f(2) = 0 \implies$	x - 2 is a factor		A1
	f(x) = (x - 2)	$2(6x^{2} + ax + b)$ with	n one of a, b correct	M 1
	f(x) = (x - 2)	$(6x^2 - x - 2)$		A1
	f(x) = (x - 2)	2(3x-2)(2x+1)	(f.t. only $6x^2 + x - 2$ in above line)	A1
	$x = 2, \frac{2}{3}, -\frac{2}{3}$	¹ / ₂	(f.t. for factors $3x \pm 2$, $2x \pm 1$)	A1
	Special east	a		

Special case

Candidates who, after having found x - 2 as one factor, then find one of the remaining factors by using e.g. the factor theorem, are awarded B1 for final 4 marks

9. *(a)* (i)

	Both	points of intersection with x-axis	B1
--	------	------------------------------------	----

(ii)

Concave up curve with <i>x</i> -coordinate of minimum = 3	B1
y-coordinate of minimum $= -4$	B1
Both points of intersection with x-axis	B1

(b)
$$x = 3$$
 (c.a.o.) B1

10.	<i>(a)</i>	$dy = 3x^2 + 18x + 27$	
		dx	

Putting derived
$$\underline{dy} = 0$$
 M1

$$dx$$

$$3(x+3)^2 = 0 \Rightarrow x = -3$$
 (c.a.o) A1

$$x = -3 \Rightarrow y = 4$$
 (c.a.o) A1

$$= -3 \Longrightarrow y = 4 \tag{c.a.o) A1}$$

(b) **Either:**

An attempt to consider value of dy at $x = -3^{-}$ and $x = -3^{+}$ **M**1 dx dy has same sign at $x = -3^{-}$ and $x = -3^{+} \Longrightarrow (-3, 4)$ is a dxpoint of inflection A1 Or: An attempt to find value of $\frac{d^2y}{dx^2}$ at x = -3, $x = -3^-$ and $x = -3^+$ **M**1 $\frac{d^2y}{dx^2} = 0$ at x = -3 and $\frac{d^2y}{dx^2}$ has different signs at $x = -3^-$ and $x = -3^+$ \Rightarrow (-3, 4) is a point of inflection A1 Or: An attempt to find the value of y at $x = -3^{-1}$ and $x = -3^{+1}$ **M**1 Value of y at $x = -3^{-} < 4$ and value of y at $x = -3^{+} > 4 \implies (-3, 4)$ is a point of inflection A1 Or:

An attempt to find values of
$$\frac{d^2y}{dx^2}$$
 and $\frac{d^3y}{dx^3}$ at $x = -3$ M1

$$\frac{d^2y}{dx^2} = 0 \text{ and } \frac{d^3y}{dx^3} \neq 0 \text{ at } x = -3 \Rightarrow (-3, 4) \text{ is a point of inflection} \qquad A1$$

(c)

G1

C2

1. (*a*)

1	0.301029995		
1.5	0.544068044		
2	0.698970004		
2.5	0.812913356		
3	0.903089987	(5 values correct)	B2
(If B2 not awa	rded, award B1 for eithe	r 3 or 4 values correct)	
Correct formul	a with $h = 0.5$		M1
$I \approx \underline{0.5} \times \{0.30\}$	1029995 + 0.903089987		
2	+2(0.544068044 +	0.698970004 + 0.812913	3356)}
$I \approx 5.31602279$	$0 \times 0.5 \div 2$		
$I \approx 1.32900569$	98		
$I \approx 1.329$		(f.t. one slip)	A1

Note: Answer only with no working earns 0 marks

Special case	for candidates who put $h =$	0.4	
1	0.301029995		
1.4	0.505149978		
1.8	0.643452676		
2.2	0.748188027		
2.6	0.832508912		
3	0.903089987	(all values correct)	B1
Correct form	ala with $h = 0.4$		M1

 $I \approx \underbrace{0.4}{2} \times \{0.301029995 + 0.903089987 + 2(0.505149978 + \\ 2 & 0.643452676 + 0.748188027 + 0.832508912))$ $I \approx 6.662719168 \times 0.4 \div 2$ $I \approx 1.332543834$ $I \approx 1.333$ (f.t. one slip) A1

Note: Answer only with no working earns 0 marks

(b) $\int_{1}^{3} \log_{10} (3x-1)^2 dx \approx 2.658 \quad \text{(f.t. candidate's answer to (a))} \quad \text{B1}$

 $4\cos^2\theta + 1 = 4(1 - \cos^2\theta) - 2\cos\theta$ 2. (a)(correct use of $\sin^2 \theta = 1 - \cos^2 \theta$) **M**1 An attempt to collect terms, form and solve quadratic equation in $\cos \theta$, either by using the quadratic formula or by getting the expression into the form $(a \cos \theta + b)(c \cos \theta + d)$, with $a \times c =$ candidate's coefficient of $\cos^2 \theta$ and $b \times d =$ candidate's constant m1 $8\cos^2\theta + 2\cos\theta - 3 = 0 \Rightarrow (2\cos\theta - 1)(4\cos\theta + 3) = 0$ $\Rightarrow \cos \theta = \frac{1}{2}, \qquad \cos \theta = -\frac{3}{4}$ (c.a.o.) A1 $\theta = 60^{\circ}, 300^{\circ}$ **B**1 $\theta = 138.59^{\circ}, 221.41^{\circ}$ B1 B1 Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range. $\cos \theta = +, -,$ f.t. for 3 marks, $\cos \theta = -, -,$ f.t. for 2 marks $\cos \theta = +, +, \text{ f.t. for 1 mark}$ $\alpha + 40^{\circ} = 45^{\circ}, 135^{\circ}, \Rightarrow \alpha = 5^{\circ}, 95^{\circ}$ *(b)* (at least one value of α) B1 $\alpha - 35^\circ = 60^\circ, 120^\circ, \Rightarrow \alpha = 95^\circ, 155^\circ$ (at least one value of α) B1 $\alpha = 95^{\circ}$ (c.a.o.) **B**1 *(c)* Correct use of $\sin \phi = \tan \phi$ (o.e.) **M**1 $\cos\phi$ $\tan \phi = \frac{10}{7}$ $\phi = 55^{\circ}, 235^{\circ}$ A1 (f.t tan $\phi = a$) **B**1 (*a*) 3. $\frac{y}{\frac{4}{5}} = \frac{x}{\frac{8}{17}}$ (o.e.) (correct use of sine rule) **M**1 y = 1.7x(convincing) A1

(b)
$$10 \cdot 5^2 = x^2 + y^2 - 2 \times x \times y \times (^{-13}/_{85})$$

(correct use of the cosine rule) M1
Substituting $1 \cdot 7x$ for y in candidate's equation of form
 $10 \cdot 5^2 = x^2 + y^2 \pm 2 \times x \times y \times \frac{^{13}}{_{85}}$ M1
 $10 \cdot 5^2 = x^2 + 2 \cdot 89 x^2 + 0 \cdot 52x^2$ (o.e.) A1
 $x = 5$
(f.t. candidate's equation for x^2 provided both M's awarded) A1

4. (a)
$$S_n = a + [a + d] + \ldots + [a + (n - 1)d]$$
(at least 3 terms, one at each end) B1

$$S_n = [a + (n - 1)d] + [a + (n - 2)d] + \ldots + a$$
In order to make further progress, the two expressions for S_n must
contain at least three pairs of terms, including the first pair, the last pair
and one other pair of terms
Either:

$$2S_n = [a + a + (n - 1)d] + [a + a + (n - 1)d] + \ldots + [a + a + (n - 1)d]$$
Or:

$$2S_n = [a + a + (n - 1)d] \quad n \text{ times} \qquad M1$$

$$2S_n = n[2a + (n - 1)d] \qquad (\text{convincing}) \qquad A1$$
(b)
$$\frac{n[2 \times 3 + (n - 1) \times 2] = 360 \qquad M1$$
Rewriting above equation in a form ready to be solved

$$2n^2 + 4n - 720 = 0 \text{ or } n^2 + 2n - 360 = 0 \text{ or } n(n + 2) = 360 \qquad A1$$

$$n = 18 \qquad (c.a.o.) \qquad A1$$
(c)
$$a + 9d = 7 \times (a + 2d) \qquad B1$$

$$a + 7d + a + 8d = 80 \qquad B1$$

b)
$$a + 9d = 7 \times (a + 2d)$$

 $a + 7d + a + 8d = 80$
An attempt to solve the candidate's linear equations simultaneously by
eliminating one unknown
 $a = -5, d = 6$ (both values)
(c.a.o.) A1

5. (a)
$$ar + ar^2 = -216$$

 $ar^4 + ar^5 = 8$
B1
B1

A correct method for solving the candidate's equations simultaneously e,g multiplying the first equation by r^3 and subtracting or eliminating *a* and (1 + r) M1

$$-216r^3 = 8$$
 (o.e.) A1
 $r = -\frac{1}{3}$ (convincing) A1

(b)
$$a \times (-\frac{1}{3}) \times (1 - \frac{1}{3}) = -216 \Rightarrow a = 972$$
 B1
 $S_{\infty} = \frac{972}{1 - (-\frac{1}{3})}$ (correct use of formula for S_{∞} ,
 $f.t.$ candidate's derived value for a) M1
 $S_{\infty} = 729$ (f.t. candidate's derived value for a) A1

(a)
$$5 \times \frac{x^{1/4}}{1/4} - 7 \times \frac{x^{3/2}}{3/2} + c$$
 B1, B1

(-1 if no constant term present)

(b) (i)
$$16 - x^2 = x + 10$$
 M1
An attempt to rewrite and solve quadratic equation
in x, either by using the quadratic formula or by getting the
expression into the form $(x + a)(x + b)$, with $a \times b$ = candidate's
constant m1
 $(x - 2)(x + 3) = 0 \Rightarrow x = 2, -3$ (both values, c.a.o.) A1
 $y = 12, y = 7$ (both values, f.t. candidate's x-values) A1

(ii) Use of integration to find the area under the curve M1 $\int_{1}^{16} dx = 16x, \quad \int_{2}^{16} x^2 dx = (1/3)x^3, \quad \text{(correct integration)} \quad B1$

Correct method of substitution of candidate's limits m1

$$[16x - (1/3)x^3]_{-3}^2 = (32 - 8/3) - (-48 - (-9)) = 205/3$$

Use of a correct method to find the area of the trapezium (f.t. candidate's coordinates for A, B) M1 Use of candidate's values for x_A and x_B as limits and trying to find total area by subtracting area of trapezium from area under curve m1

Shaded area = 205/3 - 95/2 = 125/6 (c.a.o.) A1

7. (*a*) Either:

6.

 $(5x/4 - 2) \log_{10} 3 = \log_{10} 7$ (taking logs on both sides and using the power law) M1 $5x = (\log_{10} 7 + 2\log_{10} 3)$ A1 4 $\log_{10} 3$ x = 3.017(f.t. one slip, see below) A1 Or: $5x/4 - 2 = \log_3 7$ (rewriting as a log equation) **M**1 $5x/4 = \log_3 7 + 2$ A1 x = 3.017(f.t. one slip, see below) A1 Note: an answer of x = -0.183 from $5x = (log_{10}7 - 2log_{10}3)$ 4 $\log_{10} 3$ earns M1 A0 A1 an answer of x = 0.183 from $5x = (2 \log_{10} 3 - \log_{10} 7)$ 4 $\log_{10} 3$ earns M1 A0 A1

Note: Answer only with no working earns 0 marks

(<i>b</i>)	(i)	$b = a^5$	(relationship between log and power)	B1
	(ii)	$a = b^{1/5}$	(the laws of indices)	B1
		$\log_{b} a = 1/5$	(relationship between log and power)	B1

(<i>a</i>)	(i)	A correct method for finding the length $AB = 20$	n of AB	M1 A1
		Sum of radii = distance between centre ∴ circles touch	s,	A1
	(ii)	Gradient $AP(BP)(AB) = \frac{\text{inc in } y}{\text{inc in } x}$		M1
		Gradient $AP = \frac{9-5}{-2-1} = -\frac{4}{3}$	(o.e)	A1
		Use of $m_{tan} \times m_{rad} = -1$ Equation of common tangent is:		M1
		$y-5 = \frac{3}{4}(x-1)$	(o.e)	
		(f.t. one slip provided both M'	s are awarded)	A1
(<i>b</i>)	Eithe	er:		
	An at $(x - c)$	ttempt to rewrite the equation of C with 1. $(y^2 + (y - b)^2)$	h.s. in the form	M1

$(x+2)^2 + (y-3)^2 = -7$	A1
Impossible, since r.h.s. must be positive (= r^2)	A1
Or:	
$g = 2, f = -3, c = 20$ and an attempt to use $r^2 = g^2 + f^2 - c$	M1
$r^2 = -7$	A1
Impossible, since r^2 must be positive	A1

9.	<i>(a)</i>	(i) Area of sec	tor $POQ = \frac{1}{2} \times r^2 \times 0.9$	9	B1
		(ii) Length of P	$PS = r \times \tan(0.9)$		B1
		(iii) Area of tria	ngle $POS = \frac{1}{2} \times r \times r$	(0.9)	
		(f.t. can	didate's expression in <i>i</i>	for the length of <i>PS</i>)	B 1
	<i>(b)</i>	$\frac{1}{2} \times r \times r \times tan(0.9)$ (f.t. candidate's exp	$rac{1}{2} - \frac{1}{2} \times r^2 \times 0.9 = 95.2$ pressions for area of sec	22 ctor and area of triangle,	
		`	at least one corre	ct)	M1
		$r^2 = \underline{2 \times 95.22}$	(o.e.)	(c.a.o.)	A1
		$(1 \cdot 26 - 0 \cdot 9)$			

$$(1 \cdot 26 - 0 \cdot 9)$$

r = 23 (f.t. one numerical slip) A1

© WJEC CBAC Ltd.

8.

C3

1.

<i>(a)</i>	0	2.197224577		
	0.75	2.314217179		
	1.5	2.524262696		
	2.25	2.861499826		
	3	3.335254744	(5 values correct)	B2
	(If B2 not a	warded, award B1 for either	3 or 4 values correct)	
	Correct form	nula with $h = 0.75$		M1
	$I \approx \underline{0.75} \times \{2$	2.197224577 + 3.335254744		
	3	$+4(2\cdot 314217179+2\cdot 86$	1499826) + 2(2.524262)	696)}
	$I \approx 31 \cdot 28387$	$7273 \times 0.75 \div 3$		
	$I \approx 7.820968$	3183		
	$I \approx 7 \cdot 82$		(f.t. one slip)	A1

Note: Answer only with no working shown earns 0 marks

(b)
$$\int_{0}^{3} \ln(16 + 2e^{x}) dx = \int_{0}^{3} \ln(8 + e^{x}) dx + \int_{0}^{3} \ln 2 dx$$
 M1
$$\int_{0}^{3} \ln(16 + 2e^{x}) dx = 7 \cdot 82 + 2 \cdot 08 = 9 \cdot 90$$
 (f.t. candidate's answer to (a)) A1
Note: A neuron only with no mericing charmed answer to (a)) A1

Note: Answer only with no working shown earns 0 marks

 $8(\sec^2\theta - 1) - 5\sec^2\theta = 7 + 4\sec\theta$. (correct use of $\tan^2\theta = \sec^2\theta - 1$) M1 2. An attempt to collect terms, form and solve quadratic equation in sec θ , either by using the quadratic formula or by getting the expression into the form $(a \sec \theta + b)(c \sec \theta + d)$, with $a \times c =$ candidate's coefficient of $\sec^2 \theta$ and $b \times d$ = candidate's constant m1 $3 \sec^2 \theta - 4 \sec \theta - 15 = 0 \Longrightarrow (3 \sec \theta + 5)(\sec \theta - 3) = 0$ $\Rightarrow \sec \theta = -\underline{5}$, $\sec \theta = 3$ 3 $\Rightarrow \cos \theta = -\underline{3}, \cos \theta = \underline{1}$ (c.a.o.) A1 5 3 $\theta = 126.87^{\circ}, 233.13^{\circ}$ B1 B1 $\theta = 70.53^{\circ}, 289.47^{\circ}$ **B**1 Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.

$$\cos \theta = +, -, \text{ f.t. for 3 marks, } \cos \theta = -, -, \text{ f.t. for 2 marks}$$

 $\cos \theta = +, +, \text{ f.t. for 1 mark}$

3. (a)
$$\frac{d(y^4) = 4y^3 \frac{dy}{dx}}{dx}$$
 B1

$$\frac{d}{d(8xy^2)} = (8x)(2y)\frac{dy}{dx} + 8y^2$$
B1
B1

$$\frac{d(2x^2)}{dx} = 4x, \ \underline{d}(9) = 0$$
B1
B1

$$\frac{dx}{dx} = \frac{x - 2y^2}{y^3 + 4xy}$$
 (convincing) (c.a.o.) B1

(b)
$$\frac{dy}{dx} = 0 \Rightarrow x = 2y^2$$
 B1

Substitute
$$2y^2$$
 for x in equation of CM1 $9y^4 + 9 = 0$ (o.e.)(c.a.o.) $9y^4 + 9 > 0$ for any real y (o.e.) and thus no such point existsA1

4. candidate's x-derivative =
$$2e^t$$
 B1
candidate's y-derivative = $-8e^{-t} + 3e^t$ B1
 $\frac{dy}{dx} = \frac{candidate's y-derivative}{candidate's x-derivative}$ M1
 $\frac{dy}{dx} = \frac{-8e^{-t} + 3e^t}{2e^t}$ (o.e.) (c.a.o.) A1
Putting candidate's $dy = -1$, rearranging and obtaining either an equation in

Putting candidate's $\underline{dy} = -1$, rearranging and obtaining eit dx **both** e^t and e^{-t}, or an equation in e^{2t}, or an equation in e^{-2t} ig either an equation М1

Either
$$e^{2t} = \frac{8}{5}$$
 or $e^{-2t} = \frac{5}{8}$

5 8 (f.t. one numerical slip in candidate's derived expression for $\frac{dy}{dt}$) A1 dx (c.a.o.) A1

$$t = 0.235$$

5. (a)
$$\frac{d[\ln (3x^2 - 2x - 1)]}{dx} = \frac{ax + b}{3x^2 - 2x - 1}$$
 (including $a = 0, b = 1$) M1

$$\frac{d[\ln (3x^2 - 2x - 1)]}{dx} = \frac{6x - 2}{3x^2 - 2x - 1}$$
A1

$$6x - 2 = 8x(3x^2 - 2x - 1)$$
 (o.e.) (f.t. candidate's *a*, *b*) A1
12x³ - 8x² - 7x + 1 = 0 (convincing) A1

(b)
$$x_0 = -0.6$$

 $x_1 = -0.578232165$ (x_1 correct, at least 4 places after the point) B1
 $x_2 = -0.582586354$
 $x_3 = -0.581770386$
 $x_4 = -0.581925366 = -0.5819$ (x_4 correct to 4 decimal places) B1
Let $g(x) = 12x^3 - 8x^2 - 7x + 1$
An attempt to check values or signs of $g(x)$ at $x = -0.58185$,
 $x = -0.58195$ M1
 $g(-0.58185) = 7.35 \times 10^{-4}$, $g(-0.58195) = -7.15 \times 10^{-4}$ A1
Change of sign $\Rightarrow \alpha = -0.5819$ correct to four decimal places A1

6. (a) (i)
$$\frac{dy}{dx} = -\frac{1}{4} \times (9 - 4x^5)^{-5/4} \times f(x)$$
 $(f(x) \neq 1)$ M1
 $\frac{dy}{dx} = -\frac{1}{4} \times (9 - 4x^5)^{-5/4} \times (-20x^4)$
 $\frac{dy}{dx} = 5x^4 \times (9 - 4x^5)^{-5/4}$ A1

(ii)
$$\frac{dy}{dx} = \frac{(7-x^3) \times f(x) - (3+2x^3) \times g(x)}{(7-x^3)^2} \quad (f(x), g(x) \neq 1) \qquad M1$$

$$\frac{dy}{dx} = \frac{(7-x^3) \times 6x^2 - (3+2x^3) \times (-3x^2)}{(7-x^3)^2}$$
A1

$$\frac{dx}{dx} = \frac{(7-x)^2}{(7-x^3)^2}$$
 (c.a.o.) A1

(*b*) (i)

(ii)
$$x = \sin y \Rightarrow \underline{dx} = \cos y$$
 B1
dy

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \pm \sqrt{(1 - \sin^2 y)}$$
B1

The +ive sign is chosen because the graph shows the gradient to be positive E1

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \sqrt{(1-x^2)}$$
B1

$$\frac{dy}{dx} = \frac{1}{\sqrt{(1-x^2)}}$$
B1

7. (a) (i)
$$\int \cos(2-5x) \, dx = k \times \sin(2-5x) + c$$
$$(k = 1, \frac{1}{5}, -5, -\frac{1}{5})$$

$$\int (k = 1, \frac{1}{5}, -5, -\frac{1}{5}) M1$$
$$\int \cos(2 - 5x) dx = -\frac{1}{5} \times \sin(2 - 5x) + c A1$$

(ii)
$$\int \frac{4}{e^{3x-2}} dx = k \times 4 \times e^{2-3x} + c \qquad (k = 1, -3, \frac{1}{3} - \frac{1}{3}) \quad M1$$

$$\int \frac{4}{e^{3x-2}} dx = -\frac{4}{3} \times e^{2-3x} + c$$
 A1

(iii)
$$\int \frac{5}{\frac{1}{6}x - 3} dx = k \times 5 \times \ln \left| \frac{1}{6}x - 3 \right| + c$$
 (k = 1, $\frac{1}{6}$, 6) M1

$$\int \frac{5}{\frac{1}{6x-3}} dx = 30 \times \ln \left| \frac{1}{6x-3} \right| + c$$
 A1

Note: The omission of the constant of integration is only penalised once.

(b)
$$\int (4x+1)^{1/2} dx = k \times (4x+1)^{3/2} \qquad (k=1,4,1/4)$$
 M1

$$\int_{2}^{6} (4x+1)^{1/2} dx = \left[\frac{1}{4} \times \frac{(4x+1)^{3/2}}{3/2} \right]_{2}^{6}$$
A1

A correct method for substitution of limits in an expression of the form $m \times (4x + 1)^{3/2}$ M1

$$\int_{2}^{6} (4x+1)^{1/2} dx = \frac{125}{6} - \frac{27}{6} = \frac{98}{6} = 16.33$$

(f.t. only for solutions of $\frac{392}{6}$ and $\frac{1568}{6}$ from k = 1, 4 respectively) A1

Note: Answer only with no working shown earns 0 marks

8.	<i>(a)</i>	Choice of <i>a</i> , <i>b</i> , with one positive and one negative and one side			
		correctly evaluated			M1
		Both sides of identity eval	uated correctly		A1
	<i>(b)</i>	Trying to solve $3x - 2 = 7x$	x		M 1
		Trying to solve $3x - 2 = -$	7 <i>x</i>		M1
		x = -0.5, x = 0.2	(both values)	(c.a.o.)	A1
		Alternative mark scheme	2		
		$(3x - 2)^2 = 7^2 \times x^2$	(squar	ing both sides)	M 1
		$40x^2 + 12x - 4 = 0$	(o.e.)	(c.a.o.)	A1
		x = -0.5, x = 0.2	(both values, f.t. one	slip in quadratic)	A1

9. (a) $f(x) = (x-4)^2 - 9$

(b)
$$y = (x - 4)^2 - 9$$
 and an attempt to isolate x
(f.t. candidate's expression for $f(x)$ of form $(x + a)^2 + b$, with a, b
derived) M1
 $x = (+)\sqrt{(x + 9)} + 4$

$$x = (\pm) \sqrt{(y+9)} + 4$$

(f.t. candidate's expression for $f(x)$ of form $(x + a)^2 + b$, with a, b
derived) A1
 $x = -\sqrt{(y+9)} + 4$ (o.e.) (c.a.o.) A1
 $f^{-1}(x) = -\sqrt{(x+9)} + 4$ (o.e.)

(f.t. only incorrect choice of sign in front of the $\sqrt{\text{sign and candidate's}}$ expression for f(x) of form $(x + a)^2 + b$, with a, b derived) A1

10. (*a*)
$$R(g) = [2k - 4, \infty)$$
 B1

(b) (i)
$$2k-4 \ge -2$$
 M1
 $k \ge 1$ (\Rightarrow least value of k is 1)
(f.t. candidate's $R(g)$ provided it is of form $[a, \infty)$ A1

(ii)
$$fg(x) = (kx - 4)^2 + k(kx - 4) - 8$$
 B1

(iii)
$$(3k-4)^{2} + k(3k-4) - 8 = 0$$

(substituting 3 for x in candidate's expression for fg(x)
and putting equal to 0) M1
Either $12k^{2} - 28k + 8 = 0$ or $6k^{2} - 14k + 4 = 0$
or $3k^{2} - 7k + 2 = 0$ (c.a.o.) A1
 $k = \frac{1}{3}, 2$ (f.t. candidate's quadratic in k) A1
 $k = 2$ (c.a.o.) A1

1.
$$9x^{2} - 5x \times 2y \underline{dy} - 5y^{2} + 8y^{3} \underline{dy} = 0$$

$$\begin{bmatrix} -5x \times 2y \underline{dy} - 5y^{2} \\ dx \end{bmatrix}$$
B1
$$\begin{bmatrix} 9x^{2} + 8y^{3} \underline{dy} \\ dx \end{bmatrix}$$
B1
Either $\underline{dy} = \frac{9x^{2} - 5y^{2}}{10xy - 8y^{3}}$ or $\underline{dy} = 1$ (o.e.) (c.a.o.) B1
Attempting to substitute $x = 1$ and $y = 2$ in candidate's expression **and** the use
of $\operatorname{grad}_{normal} \times \operatorname{grad}_{tangent} = -1$
Equation of normal: $y - 2 = -4(x - 1)$

$$\begin{bmatrix} \text{f.t. candidate's value for } \underline{dy} \\ dx \end{bmatrix}$$
A1

2. (a)
$$f(x) \equiv \frac{A}{(x+1)^2} + \frac{B}{(x+1)} + \frac{C}{(x-4)}$$
 (correct form) M1
 $5x^2 + 7x + 17 \equiv A(x-4) + B(x+1)(x-4) + C(x+1)^2$
(correct clearing of fractions and genuine attempt to find coefficients)
 $A = -3, C = 5, B = 0$ (all three coefficients correct) A2
(If A2 not awarded, award A1 for either 1 or 2 correct coefficients)

(b)
$$\frac{5x^2 + 9x + 9}{(x+1)^2(x-4)} = \frac{5x^2 + 7x + 17}{(x+1)^2(x-4)} + \frac{2}{(x+1)^2}$$
M1
$$\frac{5x^2 + 9x + 9}{(x+1)^2(x-4)} = \frac{-1}{(x+1)^2} + \frac{5}{(x-4)}$$
(f.t. candidates values for *A*, *B*, *C*) A1

16

3. *(a)* $2\tan x = 3\cot x$ (correct use of formula for $\tan 2x$) **M**1 $1 - \tan^2 x$ $2\tan x = 3$ (correct use of $\cot x = 1$) **M**1 $\frac{1 - \tan^2 x}{1 - \tan^2 x} \quad \frac{1}{\tan x} \\ \tan^2 x = \frac{3}{5} \quad \text{(o.e.)}$ tan x A1 $x = 37.76^{\circ}, 142.24^{\circ}$ (both values) (f.t. $a \tan^2 x = b$ provided both M1's are awarded) A1 *R* = 29 **B**1 *(b)* (i) Correctly expanding sin $(\theta - \alpha)$ and using either 29 cos $\alpha = 21$ or 29 sin α = 20 or tan α = <u>20</u> to find α 21 (f.t. candidate's value for R) M1 $\alpha = 43.6^{\circ}$ (c.a.o) A1 Greatest value of 1 = 1(ii) $21\sin\theta - 20\cos\theta + 31$ $29 \times (\pm 1) + 31$ (f.t. candidate's value for R) M1 Greatest value = $\underline{1}$ (f.t. candidate's value for R) A1 2 Corresponding value for $\theta = 313 \cdot 6^{\circ}$ (o.e.) (f.t. candidate's value for α) A1

Volume =
$$\pi \int_{0}^{\pi/4} (3 + 2\sin x)^2 dx$$
 B1

Correct use of
$$\sin^2 x = \frac{(1 - \cos 2x)}{2}$$
 M1

Integrand = $(9 + 2 + 12 \sin x - 2 \cos 2x)$ (c.a.o.) A1

$$\int (a + b \sin x + c \cos 2x) dx = (ax - b \cos x + c \sin 2x)$$

$$2 \quad (a \neq 0, b \neq 0, c \neq 0)$$
B1
Correct substitution of correct limits in candidate's integrated expression
of form $(ax - b \cos x + c \sin 2x)$

$$2 \quad (a \neq 0, c \neq 0)$$
M1
Volume = 35
(c.a.o.) A1

Note: Answer only with no working earns 0 marks

4.

5.
$$(1-2x)^{1/2} = 1 + (1/2) \times (-2x) + (1/2) \times (1/2 - 1) \times (-2x)^2 + \dots$$

 1×2
 $(-1 \text{ each incorrect term})$ B2
 $\frac{1}{1+4x} = 1 + (-1) \times (4x) + (-1) \times (-2) \times (4x)^2 + \dots$
 1×2
 $(-1 \text{ each incorrect term})$ B2
 $6\sqrt{1-2x} - \frac{1}{1+4x} = 5 - 2x - 19x^2 + \dots$
Expansion valid for $|x| < 1/4$ (o.e.) B1

6. candidate's *x*-derivative = 2 *(a)* candidate's y-derivative = $15t^2$ (at least one term correct) and use of dy = candidate's y-derivativeM1 dx candidate's x-derivative $\underline{dy} = \underline{15}t^2$ (o.e.) (c.a.o.) A1 dx = 2Equation of tangent at P: $y - 5p^3 = \frac{15}{2}p^2(x - 2p)$ (f.t. candidate's expression for dy) m1 dx $2y = 15 p^2 x - 20 p^3$ (convincing) A1 Substituting p = 1, x = 2q, $y = 5q^3$ in equation of tangent $q^3 - 3q + 2 = 0$ (convincing) Putting $f(q) = q^3 - 3q + 2$ *(b)* **M**1 A1

Either
$$f(q) = (q-1)(q^2 + q - 2)$$
 or $f(q) = (q+2)(q^2 - 2q + 1)$ M1
Either $f(q) = (q-1)(q-1)(q+2)$ or $q = 1, q = -2$ A1

$$q = -2$$
 A1

7. (a)
$$u = \ln 2x \Rightarrow du = 2 \times \frac{1}{2x} dx$$
 (o.e.) B1

$$dv = x^4 dx \Longrightarrow v = \frac{1}{5} x^5$$
 (o.e.) B1

$$\int_{-\infty}^{\infty} x^4 \ln 2x \, dx = \ln 2x \times \frac{1}{5} x^5 - \int_{-\infty}^{\infty} \frac{1}{5} x^5 \times \frac{1}{5} \, dx \qquad (\text{o.e.}) \qquad \text{M1}$$

$$\int x^4 \ln 2x \, dx = \ln 2x \times \frac{1}{5} x^5 - \frac{1}{25} x^5 + c \qquad (c.a.o.) \qquad A1$$

$$\int_{0}^{\pi/3} \sqrt{(10\cos x - 1)\sin x \, dx} = k \left[\frac{u^{3/2}}{3/2} \right]_{9}^{4} \text{ or } k \left[\frac{(10\cos x - 1)^{3/2}}{3/2} \right]_{0}^{\pi/3} B1$$

$$\int_{0}^{\pi/3} \sqrt{(10\cos x - 1)\sin x \, dx} = \frac{19}{15} = 1.27 \qquad (c.a.o.) \quad A1$$

8. (a)
$$\frac{\mathrm{d}V}{\mathrm{d}t} = kV$$
 B1

(b)
$$\int \frac{dV}{V} = \int k \, dt$$
 M1

$$\ln V = kt + c$$
 A1

$$V = e^{kt + c} = Ae^{kt}$$
 (convincing) A1

(c) (i)
$$292 = Ae^{2k}$$

 $637 = Ae^{28k}$ (both values) B1
Dividing to eliminate A M1
 $\frac{637}{292} = e^{26k}$ A1
 $k = \frac{1}{26} \ln \left[\frac{637}{292} \right] = 0.03$ A1

(ii)
$$A = 275$$
 B1

(iii) When
$$t = 0$$
, initial value of investment = £275
(f.t. candidate's derived value for A) B1

9.	<i>(a)</i>	p.q = p =	-18 $\sqrt{14}, \mathbf{q} = \sqrt{105}$ (at least one correct)	B1 B1
		Correc	ctly substituting candidate's derived values in the formula	21
		p.q =	$ \mathbf{p} \times \mathbf{q} \times \cos \theta$	M1
		$\theta = 12$	18° (c.a.o.)	A1
	(<i>b</i>)	(i)	Use of $\mathbf{CD} = \mathbf{CO} + \mathbf{OD}$ and the fact that $\mathbf{OC} = \underline{1}\mathbf{b}$ and $\underline{2}$	
			OD = 2 a , leading to printed answer CD = $2\mathbf{a} - \frac{1}{2}\mathbf{b}$	
			(convincing)	B1
			Use of $\underline{1}\mathbf{b} + \lambda \mathbf{C}\mathbf{D}$ (o.e.) to find vector equation of CD	M1
			Vector equation of <i>CD</i> : $\mathbf{r} = 2\lambda \mathbf{a} + \frac{1}{2}(1-\lambda)\mathbf{b}$ (convincing)	A1
		(ii)	Either:	
		(11)	Either substituting $\frac{1}{3}$ for λ in the vector equation of <i>CD</i>	
			or substituting 2 for μ in the vector equation of L	M1
			At least one of these position vectors $= \frac{2\mathbf{a}}{3} + \frac{1}{3}\mathbf{b}$	A1
			Both position vectors = $\underline{2}\mathbf{a} + \underline{1}\mathbf{b} \Rightarrow$ this must be the position $3 3$	n
			vector of the point of intersection E	A1
			Or: $2\lambda = \mu$	
			$\frac{3}{\underline{1}(1-\lambda)} = \underline{1}(\mu-1)$	
			2 3 (comparing candidate's coefficients of a and b and an atten	nnt
			to solve)	M1
			$\lambda = \frac{1}{2}$ or $\mu = 2$	A1
			$\mathbf{OE} = \frac{2\mathbf{a}}{3} + \frac{1\mathbf{b}}{3} $ (convincing)	A1
		(iii)	Either : <i>E</i> lies on <i>AB</i> and is such that $AE : EB = 1 : 2$ (o.e.	.)
			Or : <i>E</i> is the point of intersection of <i>AB</i> and <i>CD</i>	B1
10.	Squar	ing both	n sides we have	

$1 + 2\sin\theta\cos\theta > 2$	B1
$\sin 2\theta > 1$	B1
Contradiction, since the sine of any angle ≤ 1	B1

Ques	Solution	Mark	Notes
1(a)	$f(x+h) - f(x) = \frac{1}{(x+h)^2} - \frac{1}{x^2}$	M1A1	
	$=\frac{x^2-(x+h)^2}{x^2(x+h)^2}$	A1	
	$= \frac{x^2 - (x^2 + 2xh + h^2)}{x^2 - (x^2 + 2xh + h^2)}$		
	$x^2(x+h)^2$		
	$=\frac{-2xh-h^2}{x^2(x+h)^2}$	A1	
	$f'(x) = \frac{\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}}{h}$	M1	
	$= \lim_{h \to 0} \frac{-2xh - h^2}{hx^2(x+h)^2} = -\frac{2}{x^3}$	A1	
(b)	$\ln f(x) = x \ln \sec x$	B1	
	$\frac{f'(x)}{f(x)} = \ln \sec x + \frac{x \sec x \tan x}{\sec x}$	B1B1	B1 each side
	$f'(x) = (\sec x)^{x} (\ln \sec x + x \tan x)$	B1	
2(a)	$S_{n} = \sum_{r=1}^{n} r(r+3) = \sum_{r=1}^{n} r^{2} + \sum_{r=1}^{n} 3r$		
	$S_n = \sum_{r=1}^{n} r(r+3) = \sum_{r=1}^{n} r + \sum_{r=1}^{n} Sr$	MI	
	$=\frac{n(n+1)(2n+1)}{6}+\frac{3n(n+1)}{2}$	A1	
	$= \frac{n(n+1)}{6}(2n+1+9)$	m1	
(b)	$= \frac{n(n+1)(n+5)}{3} \text{ or } \frac{n^3 + 6n^2 + 5n}{3} \text{ oe}$	A1	
	$T_n = S_n - S_{n-1}$	M1	
	= n(n+3) - (n-1)(n+2)	A1	
	$= n^2 + 3n - (n^2 + n - 2)$	Δ1	
	= 2(n+1)	111	

Ques	Solution	Mark	Notes
3(a)	x + 2y + 4z = 3		
	x - y + 2z = 4		
	4x - y + 10z = k		
	Attempting to use row operations	M1	
	x + 2y + 4z = 3		
	3y + 2z = -1	A1	
	9y + 6z = 12 - k	A1	
	Since the 3^{rd} equation is three times the 2^{nd}	M1	
	equation, it follows that	1111	
	12 - k = -3; $k = 15$	A1	
(b)	\mathbf{I} at $\mathbf{r} = \mathbf{a}$		
	Let $z = \alpha$ (1 + 2 α)	M1	
	$y = -\frac{(1+2\alpha)}{2}$	Δ1	
	5 11 8a	AI	
	$x = \frac{11 - 6\alpha}{2}$	A1	
	or equivalent)		
	(or equivalent)		
4	1+2i 1+i	M1	
	EITHER $z = \frac{1-i}{1-i} \times \frac{1+i}{1+i}$		
	$1+2i+i+2i^{2}$	Δ1	
	$=\frac{1-i+i-i^{2}}{1-i+i-i^{2}}$	ΠΙ	
	-1+3i	Δ1	
	$=\frac{1+\epsilon_1}{2}$	Π	
	$\sqrt{10}$ —		
	$Mod(z) = \frac{\sqrt{10}}{2} (\sqrt{2.5}, 1.58)$	B1	FT their z
	$\Delta rg(z) = top^{-1}(-2) + \pi$		$\mathbf{A} = 1 \mathbf{M} 1 \mathbf{A} \mathbf{O} \mathbf{G} + \mathbf{C} \mathbf{I} \mathbf{C} \mathbf{O} \mathbf{O}$
	$\operatorname{Aig}(z) = \operatorname{tal}(-3) + \pi$	M1A1	Award M1A0 for tan (-3)
	$= 1.89 (108^{\circ})$		$(-1.25 \text{ or} - 72^{\circ})$
	OR		
		B1	
	$Mod(1+2i) = \sqrt{5}$	B1	
	$Mod(1-i) = \sqrt{2}$		
	(1+2i) 5	B1	
	$\operatorname{Mod}\left(\frac{1-i}{1-i}\right) = \sqrt{2}$	D1	FT one incorrect mod
	$Arg(1+2i) = tan^{-1}2 = 1.107$	B1 B1	
	$Arg(1 - i) = tan^{-1}(-1) = -0.785$		
	(1+2i)		
	$\operatorname{Arg}\left(\frac{1+21}{1-1}\right) = 1.107+0.785$		
	(1-1)	B1	F1 one incorrect arg
	= 1.09 (100)		

Ques	Solution	Mark	Notes
5(a)	$\alpha + \beta + \gamma = -2, \beta \gamma + \gamma \alpha + \alpha \beta = 2, \alpha \beta \gamma = -3$	B1	
	$\beta\gamma \times \gamma\alpha + \beta\gamma \times \alpha\beta + \gamma\alpha \times \alpha\beta = \alpha\beta\gamma(\alpha + \beta + \gamma)$	M1	FT their first line if one error
	$= -3 \times -2 = 6$	A1	
	$\beta \gamma \times \gamma \alpha \times \alpha \beta = (\alpha \beta \gamma)^2 = 9$	M1A1	
	The required equation is	D1	FT previous values
	$x^3 - 2x^2 + 6x - 9 = 0$	DI	T previous values
(b)	$\alpha^2 + \beta^2 + \gamma^2$		
	$= (\alpha + \beta + \gamma)^2 - 2(\beta\gamma + \gamma\alpha + \alpha\beta)$	M1	
	$=4-2 \times 2 = 0$ (convincing)	A1	
	The equation has 1 real root	B1	
	Any valid reason, eg cubic equations have either 1	D1	
	or 3 real roots and since $\alpha^2 + \beta^2 + \gamma^2 = 0$, not all	DI	
	roots are real		
6(a)	$Det(A) = \lambda (2 - \lambda) + 2 \times 4 + 3(-\lambda - 2)$	M1	
	$= -\lambda^2 - \lambda + 2$	Al M1	
	A is singular when $-\lambda - \lambda + 2 = 0$ $\lambda - 1 - 2$	A1	
(b)(i)	<i>n</i> – 1, <i>2</i>		
	$\begin{bmatrix} -1 & 2 & 3 \end{bmatrix}$		
	$A = \begin{vmatrix} -1 & 1 & 1 \end{vmatrix}$		
	$Cofactor matrix = \begin{bmatrix} 3 & 1 \\ -7 & -8 & 3 \end{bmatrix}$ si		Award M1 if at least 5 cofactors
		M1A1	are correct
	Adjugate matrix = $\begin{vmatrix} 4 & -8 & -2 \end{vmatrix}$	A1	No FT on cofactor matrix
(::)	-1 3 1		
(11)	Determinant = 2	B1	
	Inverse matrix $=\frac{1}{2} \begin{vmatrix} 4 & -8 & -2 \end{vmatrix}$	B1	FT the adjugate or determinant
	$\begin{vmatrix} 2 \\ -1 & 3 & 1 \end{vmatrix}$		

Ques	Solution	Mark	Notes
7(a)	Rotation matrix = $\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Translation matrix = $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Ref matrix in y-axis = $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
(b)	$\mathbf{T} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$	M1	
	$\begin{bmatrix} -1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$	A1	
	$= \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$		
	The general point on the line is given by $(\lambda, 2\lambda + 1)$ Consider	M1	
	$\begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda \\ 2\lambda + 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2\lambda - 2 \\ -\lambda + 2 \\ 1 \end{bmatrix}$	m1	
	$x = -2\lambda - 2; y = -\lambda + 2$ Eliminating λ	A1	
	x - 2y + 6 = 0 oe	A1	
	Consider $\begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$	M1	
	-y - 1 = X, -x + 2 = Y y = -1 - X, x = 2 - Y y = 2x + 1 leading to x - 2y + 6 = 0	A1 A1 A1	

Ques	Solution	Mark	Notes
8	Putting $n = 1$, the formula gives 1 which is the first term of the series so the result is true for $n = 1$	B1	
	Assume formula is true for $n = k$, ie	M1	
	$\left(\sum_{r=1}^{k} r \times 2^{r-1} = 1 + 2^{k} (k-1)\right)$		
	Consider, for $n = k + 1$,	M1	
	$\sum_{r=1}^{k+1} r \times 2^{r-1} = \sum_{r=1}^{k} r \times 2^{r-1} + 2^{k} (k+1)$	A1	
	$= 1 + 2^{k}(k-1) + 2^{k}(k+1)$	A1	
	$= 1 + 2^{k+1}k$	A1	
	Therefore true for $n = k \Rightarrow$ true for $n = k + 1$ and since true for $n = 1$, the result is proved by induction.	A1	Award the final A1 only if a correct conclusion is made and the proof is correctly laid out
			the proof is confectly faid out
9(a)	u + 1v = (x + 1y)(x - 1 + 1y)	MI	
	$= x(x-1) - y^{2} + i(xy + xy - y)$ Equating real and imaginary parts	A1	
	Equating real and imaginary parts, $u = r(r-1) - v^2$	ml	
	w = x(x-1) - y $v = y(2x-1)$	A1	
(b)	Putting $y = -x$,	M1	
	$u = x(x-1) - x^2 = -x$	A1	FT their expressions from (a)
	v = -x(2x-1)	Al m1	
	Eliminating x ,	A1	
	v = u(-2u - 1) cao (6e)	111	

Ques	Solution	Mark	Notes
1(a)	$f(-x) = \frac{((-x)^2 + 1)}{2} = -f(x)$	MIAI	
	$-x((-x)^2+2)$		
	Therefore f is odd.	Al	
(b)	Let		
	$\frac{x^{2}+1}{x^{2}+1} = \frac{A}{x^{2}} + \frac{Bx+C}{x^{2}} = \frac{A(x^{2}+2) + x(Bx+C)}{x^{2}+1}$	M1	
	$x(x^{2}+2)$ x $x^{2}+2$ $x(x^{2}+2)$		
	$A = \frac{1}{2}; B = \frac{1}{2}; C = 0$	A1A1A1	
	$\left(\frac{x^2+1}{x(x^2+2)} = \frac{1}{2x} + \frac{x}{2(x^2+2)}\right)$		
2	$u = \sin^2 x \Longrightarrow du = 2\sin x \cos x dx,$ [0,\pi/2] \rightarrow [0, 1]	B1 B1	
	$I = \int_{0}^{1} \frac{\mathrm{d}u}{\sqrt{4 - u^2}}$	M1	
	$=\left[\sin^{-1}\left(\frac{u}{2}\right)\right]_{0}^{1}$	A1	FT a multiple of this
	$= \pi/6$ cao	A1	
3(a)	Denoting the two functional expressions by f_1, f_2	M1A1	
	$f_1(0) = 1, f_2(0) = 1$ Therefore f is continuous when $x = 0$	A 1	No FT
	Therefore f is continuous when $x = 0$.	AI	1011
(D)	$f_1'(x) = 2e^{2x}, f_2'(x) = 2(1+x)$	M1	
	$f_{1}'(0) = 2, f_{2}'(0) = 2$	A1	
	Therefore f' is continuous when $x = 0$.	A1	No FT
4 (a)	$ z = 2, \arg(z) = \pi/3$	B1B1	
(b)	Poot $1 - \frac{3}{2}(\cos \pi/9 + i\sin \pi/9) - 1.184 + 0.431i$	M1A1	
	$R2 - \frac{3}{2}(\cos 7\pi/9 + i\sin 7\pi/9) = -0.965 + 0.810i$	M1A1	Penalise lack of accuracy once
	$R_{2} = \sqrt{2} (\cos (3\pi/9 + i \sin (\pi/9)) = -0.219 - 1.241i)$ $R_{3} = \sqrt{2} (\cos (3\pi/9 + i \sin (3\pi/9)) = -0.219 - 1.241i)$	M1A1	only
	$10 = \sqrt{2}(000000000000000000000000000000000000$		

Ques	Solution	Mark	Notes
5	The equation can be rewritten $2\sin 3\theta \cos 2\theta = \cos 2\theta$ $\cos 2\theta (2\sin 3\theta - 1) = 0$	M1A1 A1	
	Either $\cos 2\theta = 0$, $2\theta = 2n\pi \pm \frac{\pi}{2}$	M1	Accept equivalent answers
	$ heta = n\pi \pm \frac{\pi}{4}$	A1	
	Or $\sin 3\theta = 1/2$	M1	
	$3\theta = n\pi + (-1)^n \frac{\pi}{6}$	A1	
	or $\theta = \frac{n\pi}{3} + (-1)^n \frac{\pi}{18}$	A1	Accept degrees throughout
6	Consider $\cos 6\theta + i \sin 6\theta = (\cos \theta + i \sin \theta)^6$ Expanding and equating imaginary terms, $i\sin 6\theta =$ $6\cos^5 \theta (i\sin \theta) + 20\cos^3 \theta (i\sin \theta)^3 + 6\cos \theta (i\sin \theta)^5$ $\sin 6\theta = 6\cos^5 \theta \sin \theta - 20\cos^3 \theta \sin^3 \theta$ $+ 6\cos \theta \sin^5 \theta$ $\frac{\sin 6\theta}{\sin \theta} = 6\cos^5 \theta - 20\cos^3 \theta (1 - \cos^2 \theta)$	M1 m1 A1 A1	
	+ $6\cos\theta(1-\cos^2\theta)^2$ = $32\cos^5\theta - 32\cos^3\theta + 6\cos\theta$ Letting $\theta \rightarrow \pi$ in the right hand side, Limit = $-32 + 32 - 6 = -6$	A1 M1 A1	FT their expression in the line above

Ques	Solution	Mark	Notes
7(a)(i)	The equation can be rewritten as		
	$\frac{x^2}{9} + \frac{y^2}{4} = 1$	M1	
	In the usual notation, $a = 3, b = 2$.	A1	
(ii)	$e = \sqrt{\frac{a^2 - b^2}{a^2}} = \frac{\sqrt{5}}{3}$	A1	FT their <i>a</i> , <i>b</i>
	The foci are $(\pm ae, 0)$, ie $(\pm \sqrt{5}, 0)$ cao	A1	
(b)(i)			
	Substituting the <i>x</i> , <i>y</i> expressions,		
	$4 \times 9\cos^2\theta + 9 \times 4\sin^2\theta = 36(\cos^2\theta + \sin^2\theta) = 36$	B1	
	showing that <i>P</i> lies on the ellipse.		
(ii)	EITHER $\frac{dy}{d\theta} = \frac{dy}{d\theta} = -\frac{2\cos\theta}{d\theta}$		
	$dx dx/d\theta 3\sin\theta$		
	OK $dy dy 8r 2cos \theta$	M1A1	
	$8x + 18y \frac{dy}{dx} = 0; \frac{dy}{dx} = -\frac{8x}{18y} = -\frac{2000}{3}$		
	This equation of the tangent is $\frac{1}{2}$		
	$2\cos\theta$		
	$y - 2\sin\theta = -\frac{2\cos\theta}{3\sin\theta}(x - 3\cos\theta)$	M1	
	$3y\sin\theta - 6\sin^2\theta = -2x\cos\theta + 6\cos^2\theta$		
	$3y\sin\theta + 2x\cos\theta = 6$ (convincing)	A1	
(111)			
	$\begin{pmatrix} 3 \end{pmatrix}$		
	Putting $y = 0$, R is the point $\left(\frac{3}{\cos\theta}, 0\right)$	D1	
	$\begin{pmatrix} cost \\ 2 \end{pmatrix}$	D1	
	Putting $x = 0$, S is the point $\left(0, \frac{2}{\sin \theta}\right)$	B 1	
	So M is the point $\left(\frac{3}{1}, \frac{1}{1}\right)$		
	$2\cos\theta \sin\theta$ ($2\cos\theta \sin\theta$)	R1	
	$r = \frac{3}{1}$ $v = \frac{1}{1}$	DI	
	$2\cos\theta$, $y = \sin\theta$	M1	
	Eliminating θ ,	1744	
	$\cos\theta = \frac{3}{2}; \sin\theta = \frac{1}{2}$		
	2x y	A1	
	$\frac{9}{1} + \frac{1}{2} = \cos^2 \theta + \sin^2 \theta = 1$	Δ1	
	4x y	411	

Ques	Solution	Mark	Notes
8 (a)	(0,2); (-4,0); (2,0)	B 1	
(b)(i) (ii) (c)	x = 4 $f(x) = x + 6 + \frac{16}{x - 4}$ Oblique asymptote is $y = x + 6$. $f'(x) = 1 - \frac{16}{(x - 4)^2} \text{ or } \frac{x^2 - 8x}{(x - 4)^2}$	B1 M1A1 A1 B1	M1 any valid method
	At a stationary point, $f'(x) = 0$	M1	
	$(x-4)^2 = 16$ or $x^2 - 8x = 0$	AI	
	Stationary points are $(0,2)$; $(8,18)$	A1	
(d)			
(e)(i)		G1 G1 G1	LH branch RH branch Asymptotes
	$f(-7) = -27/11 \cdot f(3) = -7$	N/T1	
(ii)	f(S) = [-7,2]	A1	
	Solve $(r+4)(r-2)$	N /7 -1	
	$\frac{(x+4)(x-2)}{x-4} = -7$	MI	
	$x^{2} + 9x - 36 = 0$ x = -12, 3 $f^{=1}(S) = [-12,3]$	A1 A1 A1	

Ques	Solution	Mark	Notes
1(a)	Let $y = \sinh^{-1} x$ so that $x = \sinh y = \frac{e^y - e^{-y}}{2}$	M1	
	$e^{2y} - 2xe^{y} - 1 = 0$	A1	
	$e^{y} = \frac{2x \pm \sqrt{4x^{2} + 4}}{2}$ $y = \ln(x + \sqrt{x^{2} + 1})$	A1	
	rejecting the negative sign since $e^y > 0$	A1	
(b)	Substituting for $\cosh 2x$, $1 + 2\sinh^2 x = 2\sinh x + 5$ $\sinh^2 x - \sinh x - 2 = 0$ Solving for $\sinh x$, $\sinh x = -1$, 2 $x = \ln(-1 + \sqrt{2}); \ln(2 + \sqrt{5})$	M1 A1 M1A1 A1	
2(a)	Consider $\frac{d}{(3-x)^{1/3}} = \frac{-(3-x)^{-2/3}}{(3-x)^{-2/3}}$	M1A1	
	dx = -0.2295 when $x = 1.25$	A1	Allow any <i>x</i> between 1.2 and 1.3 M1A0A1 if negative sign omitted
	The sequence converges because this is less than 1 in modulus.	A1	FT the f' value if M1 awarded
	$x_0 = 1.25$		
	$x_1 = 1.205071132$	M1A1	
	$x_2 = 1.215296967$		
	$x_3 = 1.212984693$		
	$x_4 = 1.213508318$		
	$x_5 = 1.21338978$		
	$x_6 = 1.213416617$	Al	
	$\alpha = 1.2134$ correct to 4 decimal places.	A1	

FP3

Ques	Solution	Mark	Notes
(b)	The Newton-Raphson iteration is $\left(\begin{array}{c} 3 \\ 2 \end{array} \right) = \left(\begin{array}{c} 2 \\ 2 \end{array} \right)^{3} + 2$		
	$x_{n+1} = x_n - \frac{(x_n + x_n - 3)}{2x_n^2 + 1}$ or $\frac{2x_n + 3}{2x_n^2 + 1}$	M1A1	
	$3x_n + 1 \qquad 3x_n + 1$		
	$x_0 = 1.25$ r = 1.214285714	MIAI	
	$x_1 = 1.213217203714$	MIAI	
	$x_2 = 1.213 + 12170$ $x_1 = 1.213411663$	Δ 1	
	$x_3 = 1.213411663$	AI	
	$\alpha = 1.213412$ correct to 6 decimal places	A1	
3 (a)	$d_{(soch r)} = d(1)$		
	$\frac{dx}{dx}(\operatorname{sech} x) = \frac{dx}{dx}(\frac{dx}{\cosh x})$		
	$-\frac{\sinh x}{2}$ sechrtaph r	B1	Convincing
	$-\frac{1}{\cosh^2 x}$		
(b)			
	$f'(x) = \operatorname{sech}^2 x$	Bl B1	
	$f''(x) = -2\operatorname{sech}^2 x \tanh x$	DI	FT 1 slip
	$f'''(x) = 4\operatorname{sech}^2 x \tanh^2 x - 2\operatorname{sech}^4 x$	B1	
	f(0) = 0, f'(0) = 1, f''(0) = 0, f'''(0) = -2	BI	
	The Maclaurin series for $tannx$ is		
	$x - \frac{x}{3} +$	M1A1	
(c)	$x^{3} x^{4}$	D1	ET their series
	$(1+x) \tanh x \approx x + x^2 - \frac{x}{3} - \frac{x}{3}$	DI	I'I then series
	$\int_{-\infty}^{0.5} x^3 x^4$	M1	
	$\int_{0}^{0} (1+x) \tanh x dx \approx \int_{0}^{0} (x+x^{2}-\frac{1}{3}-\frac{1}{3}) dx$	IVI I	FT 1 slip
	$\begin{bmatrix} x^2 & x^3 & x^4 & x^5 \end{bmatrix}^{0.5}$	A 1	
	$=\left \frac{1}{2}+\frac{1}{3}-\frac{1}{12}-\frac{1}{15}\right _{0}$	AI	
	= 0.159 cao	A1	

Ques	Solution	Mark	Notes
4	$dx = \frac{2dt}{1+t^2}; [0, \pi/2] \to [0, 1]$	B1B1	
	$I = \int_{0}^{1} \frac{1}{2 - \left(\frac{1 - t^{2}}{1 + t^{2}}\right)} \times \frac{2dt}{1 + t^{2}}$	M1A1	
	$= \int_{0}^{1} \frac{2}{3t^{2} + 1} \mathrm{d}t$	A1	
	$=\frac{2}{3}\int_{0}^{1}\frac{1}{t^{2}+1/3}\mathrm{d}t$	A1	
	$=\frac{2\sqrt{3}}{3}\left[\tan^{-1}(t\sqrt{3})\right]_{0}^{1}$	A1	
	$=\frac{2\sqrt{3}\pi}{9}$ (1.21) cao	A1	
5(a)	$I_n = -\frac{1}{2} \int_0^1 x^{n-1} \frac{d}{dx} (e^{-x^2}) dx$	M1	
	$= -\frac{1}{2} \left[x^{n-1} e^{-x^2} \right]_0 + \frac{n-1}{2} \int_0^1 x^{n-2} e^{-x^2} dx$	A1A1	
	$=-\frac{\mathrm{e}^{-1}}{2}+\left(\frac{n-1}{2}\right)I_{n-2}$		
(h)			
	$I_1 = \int_0^1 x e^{-x^2} dx = -\frac{1}{2} \left[e^{-x^2} \right]_0^2$	M1A1	M1A1A1 for evaluating I_1 at any
	$=\frac{1}{2}(1-e^{-1})$	A1	stage
	$I_5 = -\frac{e^{-1}}{2} + 2I_3$	M1	
	$= -\frac{e^{-1}}{2} + 2\left(-\frac{e^{-1}}{2} + I_{1}\right)$	M1	
	$= 1 - 2.5e^{-1}$	A1	

Ques	Solution	Mark	Notes
6 (a)	Consider		
	$y = r \sin \theta$	M1	
	$= (\sin\theta + \cos\theta)\sin\theta$	A1	
	dy (a i a i a a a c i a a a)		
	$\frac{\partial}{\partial \theta} = (\cos \theta - \sin \theta) \sin \theta + \cos \theta (\sin \theta + \cos \theta)$	M1	
	$=\sin 2\theta + \cos 2\theta$	A1	
	The tangent is parallel to the initial line where		FIIshp
	dy o		
	$\frac{d\theta}{d\theta} = 0$	M1	
	$\tan 2\theta = -1$	AI	
	3π (1.10, 57.50)	Δ 1	
	$\theta = \frac{1}{8}$ (1.18, 67.5°)	AI	
	r = 1.31	A1	
(b)	$1 \int_{2}^{2} 1 c$	M1	
	Area = $\frac{1}{2} \int r \mathrm{d}\theta$	1011	
	$1^{\pi/2}$		
	$=\frac{1}{2}\int (\sin\theta + \cos\theta)^2 d\theta$	A1	
	$-\frac{1}{2}\int_{0}^{\pi/2}(1+\sin 2\theta)d\theta$	A 1	
	$= 2 \int_{0}^{1} (1 + \sin 2\theta) d\theta$	AI	
	$1 \begin{bmatrix} 1 \end{bmatrix} ^{\pi/2}$. 1	
	$=\frac{1}{2}\left \theta-\frac{1}{2}\cos 2\theta\right $	AI	
	$=\frac{\pi}{2}+\frac{1}{2}$ (1.29) cao	A1	
	4 2		

Ques	Solution	Mark	Notes
7(a)	$x = a \sinh \theta \to \mathrm{d}x = a \cosh \theta \mathrm{d}\theta$	B1	
	$I = \int \sqrt{a^2 (1 + \sinh^2 \theta)} a \cosh \theta \mathrm{d}\theta$	M1	
	$=a^{2}\int\cosh^{2}\theta\mathrm{d}\theta$	A1	
	$= \frac{a^2}{2} \int (1 + \cosh 2\theta) \mathrm{d}\theta$	A1	
	$=\frac{a^2}{2}(\theta+\sinh\theta\cosh\theta)$	A1	FT line above
	$= \frac{a^2}{2} \left(\sinh^{-1} \left(\frac{x}{a} \right) + \frac{x\sqrt{x^2 + a^2}}{a^2} \right) (+C)$		Answer given
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$	B1	
	$L = \int \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \mathrm{d}x$	M1	
	$=\int_{0}^{1}\sqrt{1+4x^{2}}\mathrm{d}x$	A1	
	$=2\int_{0}^{1}\sqrt{(x^{2}+1/4)}dx$	A1	
	$= \frac{2}{8} \left[\sinh^{-1} 2x + 4x \sqrt{x^2 + 1/4} \right]_{0}$	A1	
	= 1.48	A1	

GCE Mathematics C1-C4 & FP1-FP3 MS Summer 2014

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>